DATELTEK

D ANSK TELE TEKNIK

DaTelTek ApS
iCH 4 SOAP-API

Release 4.0.1

DaTelTek ApS ° Birkevej 4 * DK-4640 Faxe ®* Denmark ® CVR: 31 06 05 59
® +45 32 22 22 22 » www.dateltek.dk * X info@dateltek.dk

DATELTEK

Table of contents

(00T oY= T o = U S 3
08 g Y @) o o e 1Yol oY o USRS 4
FN o o || TSV P USSP PPOTOTRUPPR 4
AUTNENTICATION ...ttt ettt e st e st e e e bt e e s bt e e s ab e e eabeeeneee s beeesnteesnseesaneeesareeeanes 4

[g o] g ¢=1 elo] o 1= U USSR PP OO P PUUPPPUPURPPPPP 5
DETINITIONS ..ttt ettt ettt sttt b e bt e b e e s b et sbe e s ae e e a e e et e e bt e nheeshe e s et e e b e e b e e b e e beennees 5
(e 0 T T= A =] PP PPPPPPPPPPPIRS 5
TrANSACTION FECOIM. c..uiiiiiiiietietee ettt ettt st s e st e e bt e b e e s bt e sae e e at e et e e beesbeesaeesabesabeeabeenbeenbeesnees 5

AP] FUNCTION OVEIVIBW ...ttt ettt ettt ettt e sttt e e s ettt e e s sabte e e s sabeeeessaseeeeseaseeeeesanseeessnreeessanreeessannneessans 7
FAY el WoTo) (] o I {0 g Yo o - PP 9
(XY= Moo U o PSPPSR 9

(o] gToY Moo VT J RSP 11

(oo oTo] (U] o F USRI 13

1N I oo T aY =4 (V] o Tt o) o - 15
0] o JO =T L TP PP P PP PP P PP PP PP PPPPPPPPPPPPPPPRY 15

(0] o1 80e Yo 1o o ISP 18

0] o1 30=T =T ot PP UPPPRPPP 21

(0] o Tl ¥ 7= LTSRS 23

T 2= U PPN 26

(0] o168 o [o] Y PRSP 28
Possible error responses fromM the APlooi it e e et e e e sbee e s e sbee e e enanes 30
General fOr all STATUS CallS.o.iiiiie et s 31
OOSTATUS ittt e a e s s e e sab e e e s e 33
0100 N =1 {6 PPN 36

L= N = U PP ROTORR 37

AP MainteN@anCe fUNCLIONS ...eoveiiieiiieeie ettt ettt et ettt st e bt e s beesae e et e et e e nbeesreesanesanenane 39
[T oo 11 1T TP PRP PP RVRUSRPROP 39
TranSaCtioN STATESeviiiiiiiiii e 41
ACTIVE SEATES. i e s r e e e e e e r e e e ne e s e e e e e annes 41
PaSSIVE STATES. ... e e e et e s e e s s n e e e e s s ree e e s saneneeenane 43

Page 2 of 51

API Error codes and description

Simple test client in PHP

Change Log

API-Version | Date Changes

4.0.1 26/10 2011 Fixed problem when counting series in NPCreate, NPChange & NPreturn.
4.0.0 01/10 2011 First official release.

4.0.0beta6 | 24/8 2011 Beta 6 release. Added endFlow facility.

4.0.0beta5 | 23/82011 Beta 5 release. Added and corrected Transaction states.

4.0.0betad | 22/82011 Beta 4 release. Added optional parameter includeAll to pnoStatus.
4.0.0beta3 | 21/82011 Third beta release. Changed documentation for pnoStatus.

4.00beta2 |21/72011 Second beta release. No further comments.

4.00betal | 21/7 2011 First beta release.

Page 3 of 51

DATELTEK

ICH 4 SOAP API description

iCH 4 SOAP API (hereafter API) is used for communicating with DaTelTek ApS iCH 4-manager from external
applications through calls to the API engine using general SOAP protocol.

Using the APl enables possibility to achieve the same functionality in the ICH system as if using the WEB
based interface.

API calls
All functionality of the APl is documented in the WSDL that can be optained in the following manner:

http://<ICH URL>:8080?wsd|

Furthermore all public API functions is revealed by accesing the following URL:

http://<ICH URL>:8080

This documentation will only focus on the parsing of parameters to and from the API and the dependencies
in between these.

In general, al parameters, names, values and procedures is described in the public accessable documents

Rules & Procedures on Number Portability, V2.2, May 2011
(http://www.teleindu.dk/billeder/Nummerportabilitet/RulesProcedure_-__ APG26_022-final.pdf)

Requirements/Transactions for Number Portability, V1.9, March 2008
(http://www.teleindu.dk/billeder/Nummerportabilitet/APG96_019-final20080327.pdf)

All valid calls to the APl will return either the requested dataset or an error message. Any non-valid calls
will return an SOAP exception error.

Examples in this documentation is written in PHP language.
Authentication
The APl us standard HTTP authentication and is used in any call except fetching of the WSDL.

Authentication example:

<?php
$SConnectOptions = array (
'login' => 'api user',
'password' => 'api pass');
SWSDL = "http://<ICH7URL>:8O8O?del";

SapiClient = new SoapClient ($WSDL, $ConnectOptions);

>

Page 4 of 51

http://www.teleindu.dk/billeder/Nummerportabilitet/RulesProcedure_-__APG26_022-final.pdf
../../../../Devel/INT-iCH/API/Requirements/Transactions%20for%20Number%20Portability,%20V1.9,%20March%202008%20(
../../../../Devel/INT-iCH/API/Requirements/Transactions%20for%20Number%20Portability,%20V1.9,%20March%202008%20(

DATELTEK

Error response

An error from the APl will have the following format:

stdClass Object
(
[errorCode] => errNo
[errorText] => errText
)

The APl will always return one, and only one errorClass

Possible errorcodes is found later in this document.

Definitions

In general all API calls are not case sensitive.

Besides the definitions found in “Rules and Procedures” and “Requirements for transactions” in relation to
OCH Denmark, the following terms is used in this documentation:

PortingSet

A dataset containing Routinglnfo, Charginginfo, SPC, Municipality, Serviceoperator and NetworkOperator.
Several “Portingsets” may be created in the system allowing NetworkOperators to interconnect with

several carriers and to have several ServiceOperators attached with them as NetworkOperators. Also this
allows for several SPC nodes (on SS7 level) and or mobile carriers to which the numbers should be ported.

NetworkOperators could use the APl — through own systems — to service porting requests for
ServiceOperators, and could take great advantage of creating a PortingSet for each of these operators.

PortingSets are created and maintained by DaTelTek technical staff. There is no support for creating or
modifying these neither through the API nor the Web-based interface as this requires further licensing
adding service operators to the system.

Transaction record

All transactions to and from OCH is described in a transaction. This transaction contains all needed
information send or received and a current “state” that described the immediate status for the transactions
progress in the system.

A typical transaction flow could be:

1. We send a npCreate to OCH to request the start of a porting. At this time the only reference to the
transaction (besides the telephone number requested) will be our OriginatingOrderNumber, a
unique number we are required to assign all outgoing transactions towards OCH. The API will
respond this number upon start of a porting request.

2. OCH will validate the transaction and either replies to the ICH system with an npError in case of
malfunction, faulty parameters passed or conflict with another open flow, or if successfully parsed

Page 5 of 51

DATELTEK

—an OCH_OrderResponse confirming the reception of the transaction and the start of a flow in
OCH. In the OCH_OrderResponse the OCHOrderNumber is found, this is the OCH transaction
number that may be used for reference in the entire lifetime of any transaction in OCH related to
the initial request and may be used to follow the flow in OCH-online. Typically the
OCH_OrderResponse (or npError in case of problems) will be responded within 3-5 minutes after
initiating the request.

Now the ICH transaction will enter a state where we await either a npConfirm or npReject from the
donor of the number. This will typically take 5-15 days (as described in “Rules and Procedures”). If
the porting is rejected by the donor, the ICH system will receive a npReject with a cause for the
rejection and the entire flow is terminated on OCH. The user of the ICH system is informed and will
have to take appropriate actions both in customer relation and in the ICH by closing the flow
locally. In case the customer should regret the porting or an error was made during the initial
request, a npCancel may be issued by us which will cancel the entire flow on both the Donor’s ICH
system, our ICH system and OCH.

When the agreed date and time for porting the number is reached, the ICH system will update own
database and automatically submit an npComplete to OCH. This will be translated by OCH to an
npUpdate which is then send to all active operators for them to update their own ICH database
with the new location of the ported number(s).

All other Service- and Network operators will reply with a npUpdateComplete to OCH — a reply that
is relayed to us as recipient of the number, to inform us that their ICH system has been updated
correctly with the information related to the number porting issued. This will normally take 15-20
minutes after we issued the npComplete, depending on the load of the other operators ICH
systems. During this time we may request a list in our ICH system describing which operators that
have not yet responded.

The number is now ported (when all other operators have responded) and all flows in both ICH and
OCH is terminated normally. In case an operator fails to respond, OCH will issue a pseudo
npUpdateComplete on their behalf after a number of days (typically 7 days). This to ensure that the
flow is terminated normally within a reasonable timeframe.

Page 6 of 51

DATELTEK

APl Function overview

Function call Reply from API Comments Category
about API will reply with current version. Good for testing. General
apiservertime Return the current timestamp of the ICH Good for testing. General
server.
releaselnfo Return the audit for the API. Informal General
Good for testing.
psetLookup SPC, Municipality, Routinglnfo, Lookup all active General
Charginglinfo, Serviceoperator and PortingSet’s in the Lookup
Netvaerksoperator for each PortingSet. database.
Error if no PortingSet is found.
pnoLookup All database information related to the Lookup details related General
number (serie). Especially to a telephone number Lookup
Serviceoperator, Netveerksoperator,
PortingCase, NumberType, SPC,
Municipality, RoutingInfo and
Charginginfo may be useable upon porting
request.
cpsLookup The name and possible other information | Lookup the information | General
about an Operator is replied. related to an operator Lookup
based on his CPS code.
npCreate Our OriginatingOrderNumber for the Starts a port of a Porting
transaction or an error. number (series)
npChange Our OriginatingOrderNumber for the Start changing Update /
transaction or an error. information on a phone | Porting
number. (May be used
instead of npCreate
while porting between
own passive
serviceoperators (Using
PortingSet’s for own
LSQO’s)
npReturn Our OriginatingOrderNumber for the Return a number to Update

transaction or an error.

range holder (after 6
months retention) when
a customer relation is
terminated.

Page 7 of 51

DATELTEK

npCancel Our OriginatingOrderNumber for the Cancel an active flow if Update
transaction or an error. customer regrets or if an

error was made.

ooStatus One or more transaction records Show status based on Status
OriginatingOrdernumber

pnoStatus One or more transaction records Show status based on Status
telephone number

taStatus One or more transaction records Show list of active Status
transactions based on
transaction state

endFlow Our OriginatingOrderNumber for the Local termination (ICH) Maintenance

transaction or an error.

on a porting-flow

Page 8 of 51

DATELTEK

API Lookup functions

psetLookup

Function: Lookup PortingSet

Description: Fetch values from the PortingSet table

Function call Mandatory values Optional values Comments
psetLookup

Response value(s) Comments

A’PortingSet’ record for each PortingSet in the ICH database is returned

name The name on the PortingSet

spc SPC “Signalling Point Code” (SS7 node number) — The number of the interconnect node
to which a customer is attached. Must be used in conjunction with municipality and
voids the use of Routing- / Charging information

municipality Municipality — legacy information related to the geographic location of the customer.
Must be used in conjunction with SPC and voids the use of Routing- / Charging
information

routinginfo RoutingInfo — mostly used for Mobile phone numbers and must be used in conjunction

with Charginglnfo. Voids the use of SPC/Municipality.

charginginfo

ChargingInfo — mostly used for Mobile phone numbers and must be used in
conjunction with Routinglnfo. Voids the use of SPC/Municipality.

serviceOperator

The Serviceoperator that will be the owner of the number

networkOperator

The Networksoperator that should route the calls for the number

Page 9 of 51

DATELTEK

Example on usage of psetLookup:

Response from the API:

stdClass Object
(

[count] => 2

[portingSets] => Array

(
[0] => stdClass Object
(

[name] => TeleCom Fixed
[spc] => 00
[municipality] => 000
[routingInfo] => 7273
[chargingInfo] => 7273
[networkOperator] => 01072
[serviceOperator] => 01072

)

[1] => stdClass Object
(

[name] => TeleCom FIXED 2

[spc] => 00

[municipality] => 000
[routingInfo] => 703450
[chargingInfo] => 703450
[networkOperator] => 01072
[serviceOperator] => 01072

)

Possible error responses from the API:

Errorcode | Comments

30 ”No Portingsets found in DataBase”

Page 10 of 51

DATELTEK

pnoLookup
Function: Lookup PhoneNumber
Description: Fetch values for a telephonenumber in the database
Function call Mandatory values Optional values Comments
pnoLookup
Phonenumber The telephone number for
information request

Response value(s)

Comments

All information found in database related to the given number is responded

entryType

Either "R” or "P” for respective Range or Ported entry in Database

rangeHolder

The operator that subscribe to the Range of numbers from the regulatory agency to which the
number(s) originates

serviceOperator

The Serviceoperator that is registered as having the customer relationship related to the
number(s)

networkOperator

The Networksoperator that routes the calls for the number(s)

firstPhoneNumber

The first number in the series (Does NOT necessarily mean that the number is part of a series —
may be same as LastPhoneNumber)

lastPhoneNumber

The first number in the series (Does NOT necessarily mean that the number is part of a series —
may be same as FirstPhoneNumber)

portingCase

May contain the values 'PortedNonGeo’, 'PortedWithGeo’ or "'NonPorted’ as described in
“Requirements for transactions” by OCH

municipality

Municipality (if the operator use RoutingInfo/ Charginginfo this value will always be '000’)

spc SPC (if the operator use Routinglnfo/ Charginglinfo this value will always be '00’)
numberType May contain the values "FIXED’ or "GSM’ there is no special indication for VolP.
routinginfo RoutinglInfo (if the operator use SPC / Municipality this value will always be ’00000000’)

charginginfo

Charginglnfo (if the operator use SPC / Municipality this value will always be ’00000000’)

lubo

Internal database value — Last updating operator

Page 11 of 51

DA

Example on usage of pnoLookup:

Response from the API:

stdClass Object

(

[entryType] => P

[rangeHolder] => 01011
[networkOperator] => 01083
[serviceOperator] => 01083
[firstPhoneNumber] => 56574016
[lastPhoneNumber] => 56574016
[portingCase] => PortedWithGeo
[municipality] => 740

[spc] => 29601

[numberType] => FIXED
[routingInfo] => 00000000
[chargingInfo] => 00000000
[lubo] => 01083

Possible error responses from the API:

TEK

Errorcode | Comments

1 "Telephone number is not numeric”
2 "Telephone number is not 8 ciphers”
3 "” Telephone number is invalid”

Page 12 of 51

DA

TEK

cpsLookup
Function: Operator Lookup
Description: Fetch operator information based on CPS code
Function call Mandatory values Optional values Comments
cpsLookup
CPS The operators unique CPS
code as assigned by OCH
Response value(s) Comments

desc The name for the Operator as registered in ICH (data typically fetched from OCH)
active 0/1 — Describes wether the operator is active on OCH

contactPerson If registered — the name of the NP responsible at the operator

email If registered —E-mail of the NP responsible at the operator

phoneNumber If registered — If registered, the contact telephonenumber of the NP responsible at the

operator

mobileNumber

If registered — Cell phone number of the NP responsible at the operator

faxNumber

If registered —FAX number of the NP responsible at the operator

opeType

Type of Operator

Page 13 of 51

DATELTEK

Example on usage of cpsLookup:

Response from the API:

stdClass Object

(

desc] => TDC

active] => 1

contactPerson] => Carsten Hviid
email] => cah@tdc.dk
phoneNumber] => 66641462
mobileNumber] => 21462123
faxNumber] =>

[
[
[
[
[
[
[
[opeType] => 1

Note that no value for <FaxNumber> is replied in this example

Possible error responses from the API:

Errorcode | Comments

6 ”Not found among serviceoperators”

Page 14 of 51

APl Porting functions

TEK

npCreate

Function: Create (initiate) NumberPorting

Description: Initiate the portering of a number as recipient
The only mandatory parameter is PhoneNumber. If no other parameters is
passed, Numberporting is initiated of this (and only this) number with preset
default values. If PortingSet is entered, SPC, Municipality, Routinglinfo,
Charginglnfo, RecipientServiceOperator and RecipientNetworkOperator will
be fetched from the PortingSet entered. All values entered in the XML
parameters will override default information fetched if entered.

Function call Mandatory values Optional values Comments

npCreate

phoneNumber

The number that is
requested (may be primary
number in Type Il porting

of series)

portingSet PorteringSet requested for
this porting

routinginfo

charginginfo

spc

municipality

recipientNetworkOperator

recipientServiceOperator

currentServiceOperator

currentNumberType

pointOfConnection

customerlID

Only in case of PrePaid

icc

Only in case of PrePaid

requestedExecutionDate

Format: YYYYMMDD

Page 15 of 51

DATELTEK

requestedExecutionTime

format: HHMM

seriesCount

Number of series if Type Il

series 0-n

If Type Il, use the format:
hgfedcba-hgfedcba
hgfedcba-hgfedcba

hgfedcba-hgfedcba

Response value(s)

Comments

originatingOrdernumber

Our ordernumber on the transaction assigned by the ICH system

Page 16 of 51

DATELTEK

Example on usage of npCreate:

Response from the API:

stdClass Object

(

[originatingOrderNumber] => 0108361046

)

Possible error responses from the API:

Errorcode | Comments
1 "Telephone number is not numeric”
2 "Telephone number is not 8 ciphers”
3 "Telephone number is invalid”
4 "The second telephone number is less than the first telephone number in series
7 "Not registered as a network operator”
8 "Was not found among network operators”
9 ”Not a valid date format (YYYYMMDD)"”
10 "”Date is not numeric (YYYYMMDD)"”
11 "Date is in the past”
12 "Error in time format (HHMM)”
13 "SeriesCount is wrongly calculated”
14 "We are already operator of the number”
15 "Number is present in another open flow”
17 "Series format incorrect (hgfedcba- hgfedcba)”
32 "The given PortingSet is not found in database”
40 "Series missing (SeriesCount and number of given series mismatch)”

Page 17 of 51

npConfirm

Function:

Description:

DATELTEK

Confirm NumberPorting

Accept the porting of a number as donor

Used as response on an incomming npCreate where we are donor. Only
mandatory parameter is EITHER PhoneNumber OR OCHOrderNumber OR
OrigOrdernumber as long as the — by recipient requested — date for execution

is not changed. If nothing else is passed as parameters, this (and only this)

outgoing port is accepted with EITHER the requested date (from recipient) OR

“tomorrow” in case no date for execution was requested.

IF the recipient has requested a date for execution and we as donor wish to

alter this date (for any reason) the parameter” Confirmed Status” becomes

mandatory.

NOTE that the rules for postponing execution of requested date from
recipient MUST follow OCH’s rules for this and that npConfirm in the opposite
case WILL be rejected by the API.

Function call

Mandatory values

Optional values

Comments

npConfirm

phoneNumber
OR

ochOrderNumber
OR

origOrderNumber

The value the transaction is
identified by. Precedens in
case of several entries is:

1. PhoneNumber

2. OriginatingOrderNumber
3. OCHOrderNumber

directoryStatus

Indicates how the number was
listed with us (directory)
Values Unlisted, Secure and so
on — IF number is a special
secure listed number AND
fixed, this parameter becomes
mandatory

confirmedExecutionDate

The date we accept for
execution of the port. Note
that if this date is different
than the date requested,
ConfirmedStatus become
mandatory

confirmationStatus

See above.

Page 18 of 51

DATELTEK

Response value(s)

Comments

OCHOrdernumber

OCH’s ordernumber related to this flow

Page 19 of 51

DATELTEK

Example on usage of npConfirm:

Response from the API:

stdClass Object

(

[ochOrderNumber] => 2001081046

)

Possible error responses from the API:

Errorcode | Comments
80 "Either telephone number, OCHOrderNumber or OriginatingOrderNumber must be passed”
82 ” Parent transaction not found”
83 ”In re-confirm, the confirmed date must be later than the requested.”
84 ”ConfirmationStatus must be entered if confirmed date is different from requested”
86 ”ConfirmationStatus must be a value between 1 and 4” — see “Requirements for transactions” by OCH for

details regarding this parameter

87 "ConfirmedExecutionDate is in the past”
88 "” ConfirmedExecutionDate is more than 30 days in the future from requested”
89 "ConfirmedExecutionDate may not be earlier than RequestedExecutionDate”

Page 20 of 51

DATELTEK

npReject
Function: Reject NumberPorting
Description: Reject a porting of a number as donor
Used as response on an incoming npCreate where we are donor. Only
mandatory parameter is EITHER PhoneNumber OR OCHOrderNumber OR
OrigOrdernumber.
A reject code must be passed to recipient reasoning the reject. See
“Requirements for transactions” and “Rules and procedures” by OCH
regarding details for causing rejects.
Function call Mandatory values Optional values Comments
npReject
phoneNumber The value used for looking up
OR the transaction. Precedence is:
ochOrderNumber 1. PhoneNumber
OR 2. OriginatingOrderNumber
origOrderNumber 3. OCHOrderNumber
rejectCode See the section “Reject codes”
for these values and OCH
documentation for valid
causes for rejects

Response value(s)

Comments

OCHOrdernumber

OCH’s ordernumber related to this flow

Page 21 of 51

DATELTEK

Example on usage of npReject:

Response from the API:

stdClass Object

(

[ochOrderNumber] => 2001081346

)

Possible error responses from the API:

Errorcode | Comments
80 "Either telephone number, OCHOrderNumber or OriginatingOrderNumber must be passed”
82 ” Parent transaction not found”
92 "Reject code missing”
94 "Reject code not found among valid codes”

Page 22 of 51

npChange

Function:

Description:

DATELTEK

Change number

Change a number or series of numbers in the OCH (and ICH)
Numberdatabase

Only mandatory parameter is PhoneNumber, but if no other parameter is
passed, no changes will be made. First all informations related to the
number(s) are fetched and then these are then overwritten with all optional
parameters passed in this current XML transaction. A network operator may
change CurrentServiceOperator, SPC, NumberType, Municipality,
Charginglnfo, RoutingInfo and NumberPorted indicator. A serviceoperator
may change CurrentServiceOperator and the NumberPorted indicator.

This function is used to “port” a telephone number between passive
ServiceOperators (LSO’s) under the same NetworkOperator instead of
npCreate. The API MUST be used this way to ensure correct communication
with OCH while NetworkOperator is same and only ServiceOperator is
changed.

Function call

Mandatory values Optional values Comments

npChange

phonenumber The number the changes

should concern.

currentServiceOperator

currentNetworkOperator

recipientNetworkOperator

portingCase

spc

municipality

routingInfo

charginglinfo

newNumberType

numberPorted

seriesCount Number of series if Type Il

Page 23 of 51

DATELTEK

series_n If Type Il, use the format:
hgfedcba-hgfedcba
hgfedcba-hgfedcba

hgfedcba-hgfedcba

Response value(s) Comments

OriginatingOrdernumber | Our ordernumber for the transaction.

Page 24 of 51

DATELTEK

Example on usage of npChange:

Response from the API:

stdClass Object

(

[originatingOrderNumber] => 0103361046

)

Possible error responses from the API:

Errorcode | Comments
1 "Telephone number is not numeric”
2 "Telephone number is not 8 ciphers”
3 "Telephone number is invalid”
4 "The second telephone number is less than the first telephone number in series
7 "Not registered as a network operator”
8 "Was not found among network operators”
13 "SeriesCount is wrongly calculated”
15 "Number is present in another open flow”
17 "Series format incorrect (hgfedcba- hgfedcba)”
18 "We are not operator on the number”
40 "Series missing (SeriesCount and number of given series mismatch)”

Page 25 of 51

DATELTEK

npReturn
Function: Return number
Description: Retur a telephone number to RangeHolder upon Customer
termination.
Only mandatory parameter is PhoneNumber, if series are attached to the
number (Type 1) these must be passed.
DaTelTek iCH-manager supports “delayed return of telephone number” so the
retention time is held after customer termination. To uset his feature, the
parameter “ReturnDate” with the required “RunDate” for the return of
number must be passed. (today this is 6 months atfer termination).
The return of number series (Type Il) follow the normal indications for these.
Function call Mandatory values Optional values Comments
npReturn
phoneNumber The number that must be
returned.
returnDate The date the system
should send the
transaction to OCH. If not
applied, the number will
be returned immidiately.
Format: YYYYMMDD
seriesCount Number of series if Type Il
series_n If the number is Type Il the
following format is used:
hgfedcba-hgfedcba
hgfedcba-hgfedcba
hgfedcba-hgfedcba
Response value(s) Comments

OriginatingOrdernumber

Our ordernumber for the transaction.

Page 26 of 51

DATELTEK

Example on usage of npReturn:

Response from the API:

stdClass Object

(
[originatingOrderNumber] => 0103361046

)

Page 27 of 51

DATELTEK

npCancel
Function: Cancel NumberPorting
Description: Cancel an already started porting of telephone number as
recipient
Mandatory is either OriginatingOrdernumber or PhoneNumber.
npCancel may be used if our customer regrets or there is something wrong
with the creation of the port of telephone number(s). May ONLY be used on a
transaction that has not surpassed an accepted date of port by donor (PONS).
Function call Mandatory values Optional values Comments
npcancel
originatingorderNumber Our originale ordrenumber

for the port.
or

phoneNumber Phone number. If BOTH
phone number and
OriginatingOrdernumber is
applied, only the phone
number will be used.

Response value(s)

Comments

OriginatingOrdernumber | Our ordernumber for the transaction.

Page 28 of 51

DATELTEK

Example on usage of npCancel:

Response from the API:

stdClass Object

(

[originatingOrderNumber] => 0103361046

)

Possible error responses from the API:

Errorcode | Comments
1 "Telephone number is not numeric”
2 "Telephone number is not 8 ciphers”
3 "Telephone number is invalid”
4 "The second telephone number is less than the first telephone number in series
50 "originating ordernumber was not found as an active transaction”
60 "Either telephone number or originatingordernumber must be passed”
62 "Telephone number not found among active transactions”
64 ”More than one transaction found, must be handled manually.”
66 "transaction is not in a state that allow npCancel”

Page 29 of 51

DATELTEK

Possible error responses from the API:

Errorcode | Comments
1 "Telephone number is not numeric”
2 "Telephone number is not 8 ciphers”
3 "Telephone number is invalid”
4 "The second telephone number is less than the first telephone number in series
13 "SeriesCount is wrongly calculated”
15 "Number is present in another open flow”
17 "Series format incorrect (hgfedcba- hgfedcba)”
18 "We are not operator on the number”
40 "Series missing (SeriesCount and number of given series mismatch)”

Page 30 of 51

DATELTEK

API Status functions

General for all status calls.

All status calls return a record from the transaction database that has the following general layout:

Response value(s) Comments
Id The ID for the transaction from the database.
state All transactions is in a state that describes the current progress. For details see the

section “Transaction states”

direction Indicates whether the actual transaction is an incoming from OCG (='I) or outgoing
towards OCH (='0’)

transactiontype The Transactionstype.
001 npCreate
002 npOCH_Order_Response
004 npConfirmation
005 npError
006 npReject
007 npCancel
008 npComplete
009 npUpdate
010 npUpdateComplete
012 npReturn
014 npRangeUpdate
017 npChange
018 npPortingRequest (IMPLEMENTATION NOT TESTED)
019 npPortingResponse (IMPLEMENTATION NOT TESTED)

’

Please read the document “Requirement for transactions” and “Rules and Procedures’
issued by OCH for details.

date Date for initiating the transaction.

time Time for initiating the transaction

priority Transaction priority in OCH (2 or 5)

ochOrderNumber Ordrenumber assigned by OCH. Will not be issued before OCH_Order_Response is

received from OCH.

origordernumber The unique internal order number we assign any transaction initiated towards OCH.
uniquelD The Transaction unique ID — assigned by OCH on every accepted transaction.
telePhoneNumber Telephone number or primary number in Type Il series related to this transaction.
message The complete message (transaction) that was sent to — or received from OCH.

Page 31 of 51

DATELTEK

rundate The date for the execution of the transaction. (0 = immidiately)

internal Internal field containing information for later dispatch of npUpdateComplete

Page 32 of 51

DATELTEK

ooStatus
Function: Lookup OriginatingOrdernumber
description: Lookup status for an transaction based on
OriginatingOrdernumber (our unique ID)
This function may be used to lookup a transaction or list of transactions based
OriginatingOrderNumber. The function will reply a number of transactions
specified in “records_in_list” or an error if none found
Function call Mandatory values Optional values Comments
ooStatus
originatingOrdernumber Eg. Returned by npCreate,
npChange or similar.
recordOffset Offset in recordlist when
returning > 100 elements
in list
Response value(s) Comments
While state = 0, the transaction has not been processed by the ICH-system.
For further information please see the section: "General for all status calls”
recordsinList Number of records returned by API
totalRecords Total number of records in dataquery
currentOffset Requested offset into recordList
records Returned records

Page 33 of 51

Example on usage of ooStatus

Response from the API:

stdClass Object

(

recordsInList] => 2
totalRecords] => 2

currentOffset] => 0
records] => Array

(

[
[
[
[

[0] => stdClass Object
(
[id] => 6099528
[state] => 2111
[direction] => I
[transactionType] => 001
[date] => 2011-07-05
[time] => 14:16:00
[priority] => 5
[ochOrderNumber] => 200015714897
[origOrderNumber] => 01079000000000035278
[uniqueID] => 880451455
[telePhoneNumber] => 44351314
[message] => TransactionType=001;
TelephoneNumber=44351314;
OCHOrderNumber=200015714897;
UniqueID=880451455;
OriginatingOrderNumber=01079000000000035278;
CurrentServiceOperator=01096;
RecipientServiceOperator=01079;
RecipientNetworkOperator=01079;
CurrentNumberType=FIXED;
RequestedExecutionDate=20110711;
RequestedExecutionTime=0800;
CustomerID=25250;
PointOfConnection=RECIPIENT;
SeriesCount=0;

[rundate] => 2000-00-00 00:00:00
[internal] =>

)

[1] => stdClass Object
(
[id] => 6259180
[state] => 2111
[direction] => I
[transactionType] => 001
[date] => 2011-07-15
[time] => 15:08:00
[priority] => 5
[ochOrderNumber] => 200015781833
[origOrderNumber] => 01010000401770
[uniqueID] => 891315590
[telePhoneNumber] => 44351314
[message] => TransactionType=001;
TelephoneNumber=44351314;
OCHOrderNumber=200015781833;
UniqueID=891315590;
OriginatingOrderNumber=01010000401770;
CurrentServiceOperator=01096;
RecipientServiceOperator=08077;
RecipientNetworkOperator=01010;
CurrentNumberType=FIXED;
PointOfConnection=RECIPIENT;
SeriesCount=0;

[rundate] => 2000-00-00 00:00:00
[internal] =>

Page 34 of 51

DATELTEK

Possible error responses from the API:

Errorcode | Comments
50 "”QOriginating Ordernumber was not found as an active transaction”
52 " Originating Ordernumber was not found in the list of parameters”

Page 35 of 51

DATELTEK

pnoStatus
Function: Lookup PhoneNumber status
Description: Find current status based on a telephone number
This function may be used to lookup a transaction (or list of transactions)
based on a telephonenumber. The function will reply a number of
transactions specified in “records_in_list” or recordsinList = totalRecords =
currentOffset = 0 if none records found.
Function call Mandatory values Optional values Comments
pnoStatus
phoneNumber
recordOffset Offset in recordlist when
returning > 100 elements
in list
includeAll If 1, return all records,
including processStatus =
DONE (=9999)
Response value(s) Comments

recordsinList

Number of records returned by API

totalRecords

Total number of records in dataquery

currentOffset

Requested offset into recordList

records

Returned records

For further information please see the section: "General for all status calls” and the

parameter set described in OO_Status

Same parameter set as for ooStatus + ConfirmedExecutionDate possible ConfirmedExecutionTime (if any)
if the transaction is an npCreate with us as Donor, and npConfirm(s) has been replied. E.g.

Possible error responses from the API:

Errorcode | Comments

54 "Telephonenumber was not found in the list of parameters”

Page 36 of 51

DATELTEK

taStatus

Function: Lookup Transaction status

Description: Return status from the transaction database.
This function may be used to fetch a list of ongoing transactions all matching
the criteria specified. There may only be entered one of the available
parameters per request.

Function call Mandatory values Optional values Comments

taStatus

taType (one of the
following):

AllOpen
WaitOCHresponse
WaitDonorResponse
WaitExecution
WaitOtherOpe
WaitOurResponse
Cancelled

Rejected

Errors

Matching states:

All 1= 9999

21, 310, 410, (510)

1022

1023, 1024, (1623)

1220, 1320, 1420, (1510)
110, [1023], [1024], [2111]
9127

8550

8026, 8027, 8226, 8326,
8426, 8526, 8550, 9026

NOTE: [xxxx] specifies the
possibility to resend
npConfirm with a new
date. (xxxx) concern
npPortReq and has not yet
been tested in
implementation.

Page 37 of 51

DATELTEK

Response value(s) Comments

recordslinList Number of records returned by API
totalRecords Total number of records in dataquery
currentOffset Requested offset into recordList
records Returned records

For further information please see the section: "General for all status calls” and the
parameter set described in OO_Status

NOTE: WaitOurResponse responds both new incomming npCreates awaiting
npConfirm or npReject and npCreates to which an npConfirm already has been send.
These may be identified by checking transaction->state. This will be 110 for new -
not already responded npCreates — and 2111 for npCreates to which an npConfirm
already has been send.

Same parameter set as for ooStatus

Possible error responses from the API:

Errorcode | Comments
56 "TA_type was not found in the list of parameters”
58 "Invalid TA_type”
70 ”No transactions found in the state requested”

Page 38 of 51

DATELTEK

APl Maintenance functions

endFlow
Function: End flow locally in iCH system
Description: End a internal flow in iCH system
The only mandatory parameter is OriginatingOrdernumer or
OCHorderNumber. It is only possible to end flows that has already is ended at
OCH, e.g. flows that has been rejected by donor on only wait for a iCH accept.
Function call Mandatory values Optional values Comments
endFlowCreate
originatingorderNumber The

originatingOrderNumber
we assigned the flow

ochorderNumber The ochorderNumber
assigned by OCH to flow.

Response value(s)

Comments

originatingOrdernumber | Our ordernumber on the transaction assigned by the ICH system

Page 39 of 51

DATELTEK

Example on usage of endFlowCreate:

Response from the API:

stdClass Object

(

[originatingOrderNumber] => 0108361046

)

Possible error responses from the API:

Errorcode | Comments
75 " Either OCHOrderNumber or OriginatingOrderNumber must be passed to endFlow”
77 ” Only OCHOrderNumber or OriginatingOrderNumber, not both, must be passed to endFlow”
78 " Transaction not in a state where endFlow allowed (state must be less than 8000)”

Page 40 of 51

Transaction states

Active states.

DA

TEK

The value “state” indicates the current state of the transaction at hand and may have the following values:

Value | State Category Description
0 | NON_PROC A not processed transaction.
21 | WAIT_NP_OCH_RESP npCreate npCreate send awaiting OCH_Order_Response
We are recipient
110 | WAIT_NP_CREAT_GUI npCreate npCreate received from OCH. Awaiting accept/reject
We are Donor
210 | WAIT_RU_OCH_RESP npRangeUpd npRangeUpd send to OCH — awaiting
OCH_Order_Response
310 | WAIT_RET_OCH_RESP npReturn npReturn send to OCH, awaiting OCH_Order_Response
410 | WAIT_NPC_OCH_RESP npChange npChange send to OCH, awaiting OCH_Order_Response
510 | WAIT_NPR_OCH_RESP npPortRequest npPortRequest send to OCH, awaiting
We are recipient | OCH_Order_Response (NOT TESTED IN
IMPLEMENTATION)
710 | WAIT_NP_CONF_ERR npConfirm npError recieved to a formely send NP_Confirm, Flow
We are recipient | still open
Point Of No Stop (PONS)
1022 | WAIT_NP_CONF_REJ npCreate Awaiting npConfirm or npReject from Donor
We are recipient
1023 | WAIT_NP_EXEC_DATE npCreate Awaiting date for porting
We are recipient
1024 | WAIT_NP_EXEC_DATE2 npCreate Awaiting date for porting if ConfirmedExecutionDate is
We are recipient | different than RequestedDate (changed by donor).
1220 | WAIT_FOR_ALL_RUPD npRangeUpd Awaiting npUpdateComplete from all other operators
upon initialization of numberserie.
1320 | WAIT_FOR_ALL_RETUPD | npRangeUpd Awaiting npUpdateComplete from all other operators
1420 | WAIT_FOR_ALL_CHGUPD | npRangeUpd Awaiting npUpdateComplete from all other operateors

related to changes in number series.

Page 41 of 51

DA

TEK

1510 | WAIT_NP_PORT_RESP npPortRequest Awaiting npPortingResponse from Network operator
We are Recipient | (Not tested in implementation)
1540 | WAIT_NP_PORT_START npPortRequest Awaiting Network operator to start npCreate flow
We are Recipient | (Not tested in implementation)
1622 | CC_WAIT_NP_CONF_REJ | npPortRequest Awaiting cc:npConfirm or cc:npReject from Donor
We are Recipient | (Not tested in implementation)
1623 | CC_WAIT_NP_UPD npPortRequest Awaiting execution date on porting started by
We are Recipient | npPortRequest (Not tested in implementation)
Point Of No Return (PONR)
2024 | WAIT_NP_UPD_COMPL npCreate Date for Porting reached, npUpdate send to OCH,
awaiting npUpdateComplete from all other operators
2111 | WAIT_NP_UPD_REC npCreate npConfirm send. Await porteringsdate (or send new
We are Donor npConfirm)
8026 | WAIT_NP_ERR_GUICL npError received from OCH. Awaiting reaction from
staff.
8027 | WAIT_NP_CPL_GUICL npError received from OCH. Received from OCH as
response to npComplete. Awaiting reaction from staff.
(Typically upon errors in Routing/Charging Info,
SPC/Municipality or PortingCase)
8226 | WAIT_RU_ERR_GUICL npRangeUpd npError received. Awaiting reaction from staff.
8326 | WAIT_RET_ERR_GUICL npReturn npError received. Awaiting reaction from staff.
8426 | WAIT_CHG_ERR_GUICL npChange npError received. Awaiting reaction from staff.
8526 | WAIT_NPR_ERR_GUICL npError received. Awaiting reaction from staff.
8550 | WAIT_NP_REJ_GUI npCreate npCreate rejected by donor. Cause for rejection is found
in "message”. Awaiting reaction from staff.
9026 | FATAL_WAIT_GUICL Fatal error. Awaiting reaction from staff.
9127 | TERM_BY_CANCEL npCreate npCancel received Awaiting reaction from staff.
We are Donor
9999 | X_DONE Transaction done. Waiting to be archived.

Page 42 of 51

Passive states.

DA

TEK

The following ”state” values might be returned from APl and should be ignored. They represent an internal
(temporary) state:

Value | State Category Description
220 | DO_RANGE_UPD NP_Upd Recieved from OCH.
230 | SND_NP_UPD_COMPL NP_Upd_Compl should be sent to OCH
2112 | NP_UPD_SNDCPL Do NP Update (in Database)
2624 | CC_WAIT_NP_UPD_COMPL NP_Compl sent to OCH, wait for all including donor
and us
8025 | WAIT_NP_UPD_GUICL NP_Compl recived from all
8125 | DONE_NP_UPD_SNDCPL NP Update DONE
8225 | WAIT_RU_UPD_GUICL NP_Upd_Compl recived from all
8426 | WAIT_CHG_ERR_GUICL NP_Error recieved from OCH
8450 | WAIT_NP_ERR_GUI NP_???? error/rejected by OCH
8526 | WAIT_NPR_REJ_GUICL NP_Reject recieved from OCH
9027 | TERM_BY_CANCEL NP_Cancel send Terminate FLOW...
8620 | CC_NP_CREATE_ERR Error in handling recieved cc:NP_Create

Page 43 of 51

DATELTEK

API Reject codes

These codes may be used in conjunction with npReject — reject of porting requests with us as donor.

Reject Errortext responded to recipient Notes
code
330 The number type Il configuration does not match donor's

registration

338 Telephone number not located at donor operator

339 The Customer ID does not match the telephone number

349 The telephone number is not active at the donor
operator

350 The telephone number address is undefined

351 Rejected due to pending change of telephone number

352 The telephone has pending reactivate order

353 Rejected due to pending change of customer

354 Rejected due to pending special terminate order (both

telephone term.-old debt term.)

355 The customer rejects porting (harassment blocking
active)

356 Rejected, donor operator is the customer

376 Written termination not received by Donor within
timeframe

377 Time to RequestedExecutionDate or possible earliest

date exceeds the limit

378 Network Operator rejects porting Request. Contact
Network Operator for reason

380 The Claimant of the porting is not the subscriber of the
telephone number

381 More than one mobile telephone number in the porting
382 ICC number does not match telephone number (Prepaid)
383 Number is either OPS or ERMES

Page 44 of 51

DATELTEK

APl Error codes and description

These error codes may be returned in answers’ from the API. Please look to respective functions to see
which error codes may be present in the various replies from functions.

Error code | Errortext returned by API Notes

1 "Telephone number is not numeric”

2 "Telephone number is not 8 ciphers”

3 "Telephone number is invalid”

4 "The second telephone number is less than the first telephone
number in series

5 ”Not found among service- or network operators”

6 ”Not found among serviceoperators”

7 "Not registered as a network operator”

8 "Was not found among network operators”

9 ”Not a valid date format (YYYYMMDD)"”

10 "”Date is not numeric (YYYYMMDD)"”

11 "Date is in the past”

12 "Error in time format (HHMM)”

13 "SeriesCount is wrongly calculated”

14 "We are already operator of the number”

15 "Number is present in another open flow”

16 "Order number already in use”

17 "Series format incorrect (hgfedcba- hgfedcba)”

18 "We are not operator on the number”

30 ”No Portingsets found in DataBase”

32 "The given PortingSet is not found in database”

40 "Series missing (SeriesCount and number of given series
mismatch)”

50 "originating ordernumber was not found as an active
transaction”

Page 45 of 51

DATELTEK

52 " Originating Ordernumber was not found in the list of
parameters”
54 "Telephonenumber was not found in the list of parameters”
56 "TA_type was not found in the list of parameters”
58 "Invalid TA_type”
60 "Either telephone number or originatingordernumber must be
passed”
62 "Telephone number not found among active transactions”
64 ”More than one transaction found, must be handled manually”
66 "transaction is not in a state that allow npCancel”
70 ”No transactions found in the state requested”
80 "Either telephone number, OCHOrderNumber or
OriginatingOrderNumber must be passed”
82 ” Parent transaction not found”
83 ”In re-confirm, the confirmed date must be later than the
requested.”
84 ”ConfirmationStatus must be entered if confirmed date is
different from requested”
86 ”ConfirmationStatus must be a value between 1 and 4”
87 ”ConfirmedExecutionDate is in the past”
88 " ConfirmedExecutionDate is more than 30 days in the future
from requested”
89 "ConfirmedExecutionDate may not be earlier than
RequestedExecutionDate”
92 "Reject code missing”
94 "Reject code not found among valid codes”
General error codes (on socket level)
500 “bad function call”
501 “DumpRead in progress”
1000 “Error in parsed XML”

Page 46 of 51

DATELTEK

Simple test client in PHP
The following code can be used as a simple test of the API functions.

<?php

ini_set ('soap.wsdl cache_enabled', '0'");
ini_set ('soap.wsdl cache_ttl', '0'");

$ConnectOptions = array (
'login' => 'test user',
'password' => 'test pass',
'trace' => 0,
'cache wsdl' => 1
)7

SWSDL = "http://localhost:80802wsdl";

SapiClient = new SoapClient ($WSDL, $ConnectOptions);

[/ KKk kK ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok K ok ok ok ok ok o ok K ok ok ok ok ok K ok ok ok ok Kk ok

// about

[/ KRk kK ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok ok ok ok K ok K ok ok ok ok ok K ok ok ok ok Kk ok

function about () {
global SapiClient;

Sresult = $apiClient->about();
print_r(Sresult);

[KR K K ok Kk ok K ok kK ok ok ok Kk ok K ok ok K ok K ok ok K ok K ok ok K ok Kk ok K kK ok ok ok Kk ok K ok K ok Kk ok K ok

// apiServerTime
// LR R SRS RS S SRS RS RS ESESESEEEEEEEEESEEEEEEEEEEESESRESESESESESESEEES]

function apiservertime () {
global $apiClient;

$result = $apiClient->apiServerTime () ;
print r(Sresult);

[/ KKk ko ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok o ok K ok ok ok ok ok o ok K ok ok K ok ok

// releaselnfo
// R R R R S R e R RS RS S RS R R R e e R R SRS EEEEE R E R RS

function releaselInfo() {
global $apiClient;

Sresult = SapiClient->releaseInfo();
print_r(Sresult);

[KR kK K ok ok ok ok K ok ok K ok ok ok Kk ok K ok ok K ok K ok ok K ok K ok ok K ok K ok K ok ok K ok K ok ok K ok kK ok ok ok ok Kk ok Kk k

// psetLookup

[KR kK K ok Kk ok K ok ok K ok ok ok Kk ok K ok ok K ok K ok ok K ok K ok ok K ok Kk ok K ok ok K ok ok K ok K ok ok K ok kK ok Kk ok Kk ok

function psetLookup () {
global $apiClient;

Sresult = S$apiClient->psetLookup() ;
print r(Sresult);

[/ KRk kK ok ok ok ok K ok ok K ok ok Kk ok K ok ok K ok ok K ok K ok ok K ok ok K ok kK ok K ok ok K ok ok K ok ok ok ok K ok ok K ok kK ok Kk ok Kk ok

// pnoLookup

[/ E KKKk Kk ok ok ok ok ok ok ok K ok K ok K ok ok k kK ok K ok ok ok ok K ok K ok Kk ok ok ok K ok K ok K ok ok K ok K ok K ok Kk R Kk ok ko kK

function pnoLookup (SNUM) {
global S$apiClient;

Sresult = S$apiClient->pnoLookup (SNUM) ; // phoneNumber is mandatory
print_r(Sresult);

[/ %k Kk sk ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok

// cpsLookup

Page 47 of 51

//

//

//
//
//
//
//
//
//
//
//
//

//

DATELTEK

[KKk kK ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok K o ok K ok ok K ok ok K ok K ok ok K ok ok K ok k ok ok Kk ok

function cpsLookup ($CPS) {
global $apiClient;

Sresult = $apiClient->cpsLookup ($CPS) ;
print r(Sresult);

// cps is mandatory

[/ E KKk kK ok ok ok ok ok ok ok ok K ok K ok K ok ok ok ok K ok K ok ok ok ok K ok K ok Kk ok ok ok ok K ok K ok ok ok ok ok ok K ok K ok Kk kK ok Kk Kk ok

// npCreate

[/ E KKk kK ok ok ok ok ok ok ok ok K ok K ok K ok ok k kK ok K ok ok ok ok K ok K ok K ok ok ok ok K ok K ok ok ok ok K ok K ok K ok Kk kK ok ok ok Kk ok

function npCreate ($NUM) {
global $apiClient;

$SSERIES = array();
$SSERIES[] = array('firstnumber' => "56574016", 'lastnumber' => "56574018");
$SSERIES[] = array('firstnumber' => "56574439", 'lastnumber' => "56574421");

SPARAM = array (
'phoneNumber' => $NUM,
'portingSet' => "TeleCom2",

'routingInfo' => "33445566",

'chargingInfo' => "99999999",
'spc' => "98765",
'municipality' => "55555",

// phoneNumber is mandatory

// optional, if parameter defined AND

// portingSet exist, it will override

// recipientServiceOperator,

// recipientNetworkOperator, spc, municipality,
// routingInfo and chargingInfo

// optional, if parameter defined it will
// override value

// optional, override as above

// optional, override as above

// optional, override as above

'recipientNetworkOperator' => "01096", // optional, override as above
'recipientServiceOperator' => "01096", // optional, override as above

'currentServiceOperator' => "01081",

'currentNumberType' => "FIXED",
'pointOfConnection' => "DONOR",
'ice' => "0123456789012345678",
'customerId' => "C56574016",

// optional, override as above
// optional, override as above
// optional, override as above
// optional, override as above
// optional, override as above

'requestedExecutionDate' => "20110722", // optional

'requestedExecutionTime' => "1500",

'seriesCount’' => "2",

'series' => S$SSERIES
)i

Sresult = $apiClient->npCreate ($PARAM) ;

print_r(Sresult);

// optional

// optional, if series exist it must be defined,
// contain the counts of series parsed in series

// optional, see above

[/ % KRk kK ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ko ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok

// npChange

[KR kK K ok Kk ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok kK ok K ok ok K ok ok K ok ok ok ok K ok kK ok ok K ok Kk ok Kk ok

function npChange ($NUM) {
global $apiClient;

$SERIES = array();
$SERIES[] = array('firstnumber' => "56574016", 'lastnumber' => "56574018");
$SERIES[] = array('firstnumber' => "56574419", 'lastnumber' => "56574421");

$PARAM = array (
'phoneNumber' => $NUM,

'routingInfo' => "33445566",

'chargingInfo' => "99999999",

'spc' => "98765",

'municipality' => "55555",
'recipientNetworkOperator'

'currentNetworkOperator'
'currentServiceOperator'

'newNumberType' => "GSM",
'portingCase' => "NonPorted",

'numberPorted' => "Y",
'seriesCount' => "2",

'series' => $SERIES
)i

Sresult = $apiClient->npChange ($PARAM) ;

print r(Sresult);

// phoneNumber is mandatory

// override current value

// optional, override as above
// optional, override as above
// optional, override as above

=> "01096", // optional, override as above

"01074", // optional, override as above
"01086", // optional, override as above
// optional, override as above

// optional, override as above

// optional, override as above

// optional, if series exist it must be

// defined, and contain the counts of series

// parsed in series
// optional, see above

Page 48 of 51

// optional, if parameter defined it will

DATELTEK

[KKk kK ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok K o ok K ok ok K ok ok o ok K ok ok K ok ok K ok kR kK ok

// npReturn

[KRk kK ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok k ok ok Kk ok

function npReturn (SNUM) {

global $apiClient;

$SSERIES = array();
$SERIES[] = array('firstnumber' => "56574016", 'lastnumber' => "56574018");
$SERIES[] = array('firstnumber' => "56574419", 'lastnumber' => "56574421");

$PARAM = array (

'phoneNumber' => $NUM, // phoneNumber is mandatory

'returnDate' => "20120210",// optional, if not defined, number is returned now

'seriesCount’' => "2", // optional, if series exist it must be defined, and
// contain the counts of series parsed in series

'series' => $SERIES // optional, see above

)i

Sresult = $apiClient->npReturn ($PARAM) ;
print_r($result);

// R R RS RS RS R RS RS S RS R R RS SRR R SRS RS RS E R R R R R R RS
// npCancel

[/ KKk kK ok ko ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok ok ok K ok ok K ok ok

function npCancel ($NUM) {
global $apiClient;

$PARAM = array ('phoneNumber' => $NUM, // either phoneNumber OR originatingOrderNumber
// 1is mandatory but NOT both
'originatingOrderNumber' => "010100003912"
)i

$result = $apiClient->npCancel ($PARAM) ;
print r(Sresult);

// ER R R RS R R R RS RS e RS RS RS SRR R RS RS EEEE R E SRR R R RS
// npReject
// R R RS RS R e R RS RS S RS RS RS e R R R RS RS EEEE R R R R R R RS
function npReject ($NUM) {

global $apiClient;

SPARAM = array ('phoneNumber' => $NUM, // phoneNumber, originatingOrderNumber OR
// ochOrderNumber is mandatory, but ONLY
// one of the must be defined
'originatingOrderNumber' => "010100003912"
'ochOrderNumber' => "200056144",
'rejectCode' => "355" // rejectCode is mandatory
)i

Sresult = $apiClient->npReject ($PARAM) ;
print r(Sresult);

// LR R SRS RS S SRS RS RS ESESESESESERERESESEEEEEEEEESEEESESESESESESEEES]
// npConfirm
// LR R SRS RS S SRS S S S S S SRS S S S S SRS SRR S S S SRR SR EEEEEEEEEEEEEEEEEEEEES
function npConfirm ($NUM) {

global $apiClient;

SPARAM = array (
'phoneNumber' => $NUM, // phoneNumber, originatingOrderNumber OR
// ochOrderNumber is mandatory, but ONLY
// one of the must be defined
'originatingOrderNumber' => "010100003912",
'ochOrderNumber' => "200056144",
'directoryInfo' => 2, // optional, special handling of phonebook entry
'confirmedExecutionDate' => "20110728", // optional, if not defined accept
// requestedExecutionDate
'confirmationStatus' => 3 // optional, mandatory if not requestedExecutionDate
// is accepted
)i

Sresult = S$apiClient->npConfirm($PARAM) ;
print r(Sresult);

Page 49 of 51

DATELTEK

/] KKk kK ok ok ok ok ok ok ok ok ok ok Kk ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok kR ok Kk ok

// ooStatus

[/ E KKk kK ok ok ok ok ok ok ok ok K ok K ok K ok ok k kK ok K ok ok ok ok K ok K ok K ok ok ok ok K ok K ok ok ok ok K ok K ok K ok Kk kK ok ok ok Kk ok

function ooStatus ($NUM) {
global $apiClient;

$PARAM = array (

'originatingOrderNumber' => $NUM, // mandatory
// optional,

'recordOffset' => 0

)i

$result =
print r(Sresult);

SapiClient->ooStatus (SPARAM) ;

[KKk kK ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok kR ok Kk ok

// pnoStatus

[KRk kK ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok k ok ok Kk ok

function pnoStatus (SNUM) {
global $apiClient;

SPARAM = array (
'phoneNumber' => $NUM,
'recordOffset' => 0

)i

Sresult = S$apiClient->pnoStatus ($PARAM) ;

print r(Sresult);

// mandatory
// optional,

[KR K K ok Kk ok K ok kK ok ok ok Kk ok K ok kK ok Kk ok K ok K ok ok K ok Kk ok K ok kK ok ok o ok Kk ok K kK ok Kk ok K ok

// taStatus

[KR K K ok Kk ok K ok kK ok ok ok Kk ok K ok ok K ok K ok ok K ok K ok ok K ok Kk ok K ok kK ok ok ok ok Kk ok K ok K ok Kk ok K ok

function taStatus (STA) {
global $apiClient;

SPARAM = array (
'taType' => S$TA,
'recordOffset' => 0

)i

Sresult = SapiClient->taStatus (SPARAM) ;

print_r(Sresult);

print r($apiClient-> getTypes());
print r($apiClient-> getFunctions());

about () ;
apiservertime () ;
releaseInfo();
psetLookup () ;

pnoLookup ("99992699") ;
pnoLookup ("56574016") ;

cpsLookup ("61011") ;
cpsLookup ("01011") ;

npCreate ("42222223");
npCreate ("99992699") ;

npChange ("32222223") ;
npChange ("99992699") ;

print
print
print
print

print
print

print
print

print
print

print
print

// mandatory

// optional,

mn";
"\n";
"\n";

"\n";

m\n"
"\n";

"\n";
"\n";

mn"
mn";

mn";

"\n

used if

//
//

//
//
//

//

used if query return > 100 records

used if query return > 100 records

query return > 100 records

Invalid
OK

Non
TDC

existing

Bad number

Bad number

Page 50 of 51

?>

npReturn ("32222223") ;
npReturn ("99992699") ;
npCancel ("36457595") ;
npReject ("86941985") ;
npConfirm("44351314");
npConfirm("35351211");
ooStatus ("01010000399112");
pnoStatus ("44351314");

taStatus ("AllOpen") ;

DATELTEK

print "\n";
print "\n";
print "\n";
print "\n";
print "\n";
print "\n";
print "\n";
print "\n";

print "\n";

Page 51 of 51

